skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Joo, Young Ji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Siliciclastic muds (clay- and silt-sized sediment) concentrate physical and chemical weathering products. However, both rock composition and climate can affect the mineralogy and geochemistry of these sediments. We quantitatively assessed the influence of provenance and climate on muds collected from end-member climates to test, which, if any, of these potential weathering signatures are indicative of climate in fine-grained, fluvial sediments. Granulometry, mineralogy, and geochemistry of the studied muds indicated that provenance and mineral sorting hinder interpretation of (paleo)climate signals. These issues also affect chemical index of alteration (CIA) values, as well as mafic-felsic-weathering (MFW), Al2O3−(CaO* + Na2O)−K2O (A-CN-K), and Al2O3−(CaO* + Na2O + K2O)−(FeOT + MgO) (A-CNK-FM) ternary plots, decreasing their utility as paleoclimate proxies. CaO content is heavily weighted within the calculations, resulting in even felsic-sourced sediment commonly plotting as mafic owing to the relative enrichment in CaO from preferential sorting of Ca-rich minerals into the mud-sized fraction during transport. These results cast doubt on the indiscriminate use of CIA values and ternary plots for interpreting chemical weathering and paleoclimate within muds, particularly from glacial systems. Most notably, the positive correlations between CIA and climatic parameters (mean annual temperature and mean annual precipitation) diminished when sediments that had formed in nonglacial settings were filtered out from the data sets. This implies that CIA may only be applicable when used in nonglacial systems in which the composition of the primary source material is well constrained—such as soil/paleosol profiles. Within this end-member climate data set, CIA was only useful in discriminating hot-humid climates. 
    more » « less
  2. Abstract An imbalance in pyrite weathering and burial is a primary mechanism responsible for oxygenation of the atmosphere and oceans, but key processes governing the terrestrial sulfur cycle remain nebulous. Here, we investigate components of the terrestrial sulfur cycle in a highly productive, glacier‐fed catchment, and use a global mass balance model to constrain riverine sulfur fluxes. Chemistry of stream water and plant debris in the Jostedal watershed, Norway suggests sulfur isotope discrimination is occurring in the porewater. Global models also corroborate additional, previously overlooked pyrite burial with a modest isotope fractionation (<20‰), similar to values reported from freshwater ecosystems. Collectively, our results indicate that a significant amount of sulfate produced by weathering remains trapped in terrestrial environments. This terrestrial sulfur sink might have waxed and waned over geologic time in response to major biogeochemical events such as terrestrial afforestation. 
    more » « less